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Abstract: The quick progress in quantum entanglement research allows us not one to study quantum systems down to
N-bodies but also to take a new look at these systems in different branches of physics; particularly the statistical
thermodynamics where the application of the thermo-field dynamics (T'F D) method to the investigation of entanglement is
fruitful. Because the traditional methods based on the identification of a specific parameter show their limit. The process using
(T'FD) facilitates the understanding of entanglement because it focuses directly on the eigenstate of the system and it is useful
in the equilibrium and the non-equilibrium states also. In this context, the (T'F' D) method is used in this paper to analyze
entanglement of an electron interacting with a two-mode electromagnetic field assimilated to an electron with two harmonic
oscillators. Entanglement entropies are derived between concerned, not concerned harmonic oscillator and electron compute
when the system is in a thermodynamic equilibrium and non-equilibrium state. For the equilibrium case, an increase in the
number of particles per unit volume increases the quantum entanglement consequently entanglement appears more important
for the couple oscillator-electron than the one electron, this trend is reversed for the non-equilibrium case. By respecting the
entanglement parameters, such results allow us to know the relative equilibrium state of the overall system.
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1. Introduction source of entangled photons. On the other side and recently ref
[20] treated a new approach to examine quantum entanglement

In recent years, entanglement measurements have proven in Hilbert space using TFD method. ~Subsequently, this
to be effective tools to characterize and understand quantum ~ Method was developed by ref [21] for the coupled harmonic
processes. In particular: quantum cryptography [1, 2], oscillators system.
quantum teleportation [3], quantum computing [4, 5]... In this paper, entanglement entropies are studied
etc. From the one side, given the recent progress in the analytically and numerically on the basis of TFD for the
development of the study of quantum systems, the concept  System of entangled photons in a two-mode electromagnetic
of quantum information is focused on the measurement of field to allow access on some subtle and universal features.
entanglement entropies defined via bipartite systems [6-12].
We mention herein: the entangled photons. The quantum

source of entangled photons become experimentally accessible 2. Problem Formulation: Elgenenergy

when atom interact with a strong electromagnetic field and a Solution
high power laser. It is considered an important phenomenon
in modern physics, particularly in quantum optics [13-15], We are interested in this section to study a Hamiltonian of an

quantum information [16, 17]... etc. For example refs [18, electron in interaction with a two-mode electromagnetic field.
19] have studied the electron-hole pair in a semiconductor as a It can be defined as follows
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where m, and e are respectively the mass and the charge of the electron and

A 27T62h . . * . . +
= Z AT {vjexp (i (wj —ik;r)) aj + v} exp (=i (w; — ik;r)) aj }, )
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is the vector potential. It is related with the field variables by the relation

A = s1v1q1 + S212qo. 3)

We can identify v; as polarisation of the wave vector k,  on the assumption that the electromagnetic field is considered
strong. Consider m, = 1 and A in (2.3) is polarized in the
direction of (zoz) plane. As a consequence, (2.1) becomes

4mc2
w; Vj

volume. Here U(r) is the atomic potential and is neglected

s; = where (j = 1.2) and V; are the quantization
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Note that \; = 1/w1V1 and \y = wi’{/z. We perform a unitary transformation following the variables g1, g2 through
expression:
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such as the product ¢; g» vanishes. Hamiltonian (2.4) provides a new form denoted by
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and

oc=2 ﬂ)\1)\21/11/2. (14)
V w1

To diagonalize (2.6), we introduced a second unitary operator as

O=e ik 09 +1 gi—f—z Qi—m :vg (15)
TP 0 T 202 0q | orag oz )

Consequently, when we perform the appropriate calculation we obtain
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Expression (2.16) shows well the correlation between  and on the basis of the Schmidt decomposition, specifying the
particles. It is impossible to study individually from where:  case of the photon with a single mode electromagnetic field is
result of entanglement. This model is considered in ref [22]  exposed in ref [23].

to analyse entanglement by solving the Schrodinger equation As aresult from (2.16), the corresponding eigenenergy is
h? h? h? 1 1
Ek,m,n = k'2 + ? (1 - Q) kﬁ + 3 (1 - S) ki + thwl (nl + 2) + h72w2 <n2 + 2) (20)

3. System at Equilibrium State
From the Fock space, the system is described as the eigenstate |n1, no; 1x,) and the following eigenvalue equation

Hiny,noily,) = Eny ng ks |1, 125 1iy ), (21)

|n1,m2) and |1,) are respectively the states of the field and the electron in the atom. The global state is thus described as a
triple sum: two harmonic oscillators and electron in atom. It is represented through a continuous non-separable variable ks so
Hamiltonian (2.16) can be re-expressed as follows

Z /d?’ks[ ( +(1-Q)k+ (1—S)k§)

ni,na= =0

(22)
1 1
+ hyiw (g + 5) + hyawa(ng + 5) 11,125 1ry) (01, N2 1iy |

TFD method is defined as a direct application of the system state based on the formula of thermo-statistical physics. To start,
we define the partition function as

Z =Trisse 1. (23)

It is given following (3.2) by
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Here £ is the inverse of the temperature. The ordinary density matrix reads:
—BH
e
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In relation to (3.5), the statistical eigenvector |¢)) is expressed as
oo
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The extended density matrix define through the product of the eigenvector (3.6) and their conjugate follow the expression

will be an essential tool to describe quantum entanglement in 7'F'D so it is given by

1
p1,2,3) (K1, k2,€1,€2,B) = AN Z Z /d3k3/d3k3

(ml,mz) O(Tll,nz) 0
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Investigation of entanglement in multiparticles is discussed in refs [24, 25]. At this level, we have all the means to study
entanglement of the system on statistical thermodynamics properties.

3.1. Entanglement Between the Couple {1,2} Oscillators and Electron {3}

To understand the overall situation, consider the couple {1, 2} as not concerned and we examine the state {3} of the electron
as the reduced state. Their expression is provided from

p3 (K1, ko, €1,€2, B) =Tr12p(1,2,3) (K1, k2,1, €2, B)

exp (— ﬂ}?l wl) exp (776272 wz)

Z(€1,EQ,K)

3 37 1 1
. / a ’“/ s (T exp (Bhmwn)) (1 — oxp (—hBrawa))
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The traditionally entanglement entropy is described as
Sz = —kpTrs [p3log p3]. (30)
The calculation yields
3
27
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Figure 1. Results of entanglement entropies S3 (83, k2) in (3.11) and S2.3(8, k2) in (3.14).

3.2. Entanglement Between Oscillator {1} and the Couple {2,3} Oscillator-electron

Consider a harmonic oscillator {1} is not concerned and we study the {2, 3} state as the reduced state. We have

p2,3 (K1, K2, €1,€2, ) =Tr1pa 23) (K1, k2,€1,€2, B)

exp <—@iw1) exp (—B—Z’BWQ> 1
N Z(Iﬂ?l,lﬂ?Q,El,EQ,ﬁ) (l_exp(_ﬂh71wl))
X Z /d3k3/d3kl3 exp [— ﬁf';w o (mg + ng)] (32)
(mg,nz)zo
2

h ’ 7 ’
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In this manner we obtain the entanglement entropy

So3 = —kpTra 3 [p2,3log pas], (33)

as
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From the numerical part we set: V3 = 2.5, Vo = 1.8, characterizes entanglement of the system at thermodynamic
w; = 2.3, wy = 1.3 and kg = 1. The discussion is equilibrium.
done by expressions (3.11) and (3.10). We then focus on the
evolution of entanglement at equilibrium state, we specify the rer .
parameters B and K9. 4. System at Non'eqUIIIbrlum State
We note that entanglement is more important for the couple ) ) ) o
electron-harmonic oscillator compared to the one electron, In this section, we discuss the non-equilibrium state due to

consequently the choice of the same reference scale , 8, V;  the dissipative mechanism of the system. It is characterized

and V5 shows that the particle number per unit volume, fully by the ordinary time-dependent density matrix solution of the
following dissipative von Neumann equation:

oty = [A,(0)] — € (olt) ~ pea). (3%)

To show the potential applications from the 7'F'D of entangled thermal state at non-equilibrium systems, the time-dependent
density matrix is computed as follows

Preq (K1, K2,€1,62,8) = e “UT (£)poU(t) + (1 — ™) peq- (36)

po in (4.2) is the density matrix of the ground state and is written as

exp ( Bh = wl) exp (——B}?Z wQ)

2(51752751,52,5)

po = |0, 0; 05 )0, 0; O |, (37)

where U (t) is the unitary operator. It is reads

U(t) —¢ iHt/h
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(’I’Ll,ng) 0
(38)
+ it ((’71731”1 + 72122712)
+ (mw +72wQ))] n1,m2; 1 ) (na, o 1y |
Inserting (3.5), (4.3) and (4.4) into (4.2), we have
Preq (K1, K2,€1,€2, B) - /d3k3 00n5,001,,0 — 1) e~ +1)
neq ) ) ) ) Z(€1,62,K) ni,v¥n2z, k>
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ph?
X exp {—2 (k2+ (1 - Q) K+ (1- 9)k?) (39)
8h
x exp | —Bh (y11n1 + Yawwang) — o> (711 + Yow2) | In1, ne; lké><n1,n2; 1kg|'

Going back to the formula p = |¢(¢)){(1)(¢)| and Eq (4.5), the extended density matrix becomes
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If we find the density matrix we can examine entanglement. This parameter is considered above, then the remainder is easy to
handle by following the same procedures as the equilibrium case. We begin with:

4.1. Entanglement Between the Couple {1, 2} Oscillators and Electron {3}

We applied the same strategy as in the previous case for the non-dissipative mechanism, we obtain the extended density matrix
as follows

Bhya

Bhya
exXp | — wy1)exXp | — w2 ’
pe3) (K1, ko, 1,62, ) = ( Z?m nz) - 5(2 3 2 )/dBks/d3k3X1k3,1k3, (t)

2
X exp [ ’BTH ((k’f’y +k3,)+ (1-Q) (k. +K3,) + (1 S) (K}, + kgz))] (41)

X ‘1k3><1kg||ik3><ik;|7

where
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Using (4.7), entanglement entropy
S5 = —kpTrs [p3 log ps] 43)
is described as
_ e (= B m) exp (- ) exp (= #tm) exp (— HF2w)
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exp (— Bhyi@) exp ( — Bhyaws) )

Bo(t) = ( (I—e)+(1—e) (1 —exp (= hfnwi)) (1 —exp (- hBraws))

and

exp (— Bhyiwy) exp ( — Bhyams) >

Yo(t) = <(1 e+ (=) (1 —exp (= By@)) (1 —exp (= hByaws))

4.2. Entanglement Between {1} Oscillator and {2, 3} Oscillator-electron
Through a similar treatment, we find the reduced density matrice of the couple oscillator-electron as
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We have the corresponding extended entropy

So3 = —kpTra 3 [p23log pas],

in the form
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with a (t), 81(t), v1(t) are given by

(46)

(47)

(48)

(49)

(50)

(51
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Figure 2. The time dependance of the extended entropies in Eq (4.10) and (4.17) for 8 = 0.5 and different values of k2: ko = 1.8 (blue solid line), ko = 2.5 (brown solid line),

ko = 3.1 (red solid line), ko = 4 (black solid line).
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Figure 3. The time dependance of the extended entropies in Eq (4.10) and (4.17) for ko = 0.5 and different values of 3: 8 = 1.8 (blue solid line), B = 2.5 (brown solid line),

B = 3.1 (red solid line), B = 4 (black solid line).

With respect Figure 2 and by considering the case of one
electron, entanglement is more larger for the small values of
the ko parameter (ko = 1.8, 2.5 and 3.1). By increasing
Ko particularly in the region et > 2, entanglement evolution
becomes equal between electron-harmonic oscillator and one
electron. Saw this development, we expect that the trend will
be reversed.

Compared with Figl, we can conclude that from the Fig2,
the system starts from a non-equilibrium state, it evolves
towards the equilibrium state. We say that is an equilibrium
with respect to ko (relative equilibrium) but this is not a
positional equilibrium because from Fig3, by following the

increase of (3, entanglement is more important and it reaches
very large values of the case one electron.

5. Conclusion

Quantum entanglement of electron in interaction with
two-mode electromagnetic field is studied using the TF'D
method. We derive the extended entropies by considering the
cases equilibruim and non-equilibruim thermodynamic state
compute between concerned and not concerned oscillator-
electron.  The importance of particle number per unit



30 Ahlem Abidi: The Thermo-field Dynamics Method for Electron with Two-mode Electromagnetic Field

volume at thermodynamic equilibruim reflects the significance
of entanglement consequently, entanglement appears to be
more important for the couple electron-oscillator.  This
trend reverses follow the non-equilibruim state effect of
entanglement parameter to know us qualitatively the relative
equilibrium state.
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